Identification of a receptor-binding pocket on the envelope protein of friend murine leukemia virus.
نویسندگان
چکیده
Based on previous structural and functional studies, a potential receptor-binding site composed of residues that form a pocket at one end of the two long antiparallel helices in the receptor-binding domain of Friend 57 murine leukemia virus envelope protein (RBD) has been proposed. To test this hypothesis, directed substitutions for residues in the pocket were introduced and consequences for infection and for receptor binding were measured. Receptor binding was measured initially by a sensitive assay based on coexpression of receptor and RBD in Xenopus oocytes, and the findings were confirmed by using purified proteins. Three residues that are critical for both binding and infection (S84, D86, and W102), with side chains that extend into the pocket, were identified. Moreover, when mCAT-1 was overexpressed, the infectivity of Fr57-MLV carrying pocket substitutions was partially restored. Substitutions for 18 adjacent residues and 11 other previously unexamined surface-exposed residues outside of the RBD pocket had no detectable effect on function. Taken together, these findings support a model in which the RBD pocket interacts directly with mCAT-1 (likely residues, Y235 and E237) and multiple receptor-envelope complexes are required to form the fusion pore.
منابع مشابه
Identification of the receptor binding domain of the mouse mammary tumor virus envelope protein.
Mouse mammary tumor virus (MMTV) is a betaretrovirus that infects rodent cells and uses mouse transferrin receptor 1 for cell entry. To characterize the interaction of MMTV with its receptor, we aligned the MMTV envelope surface (SU) protein with that of Friend murine leukemia virus (F-MLV) and identified a putative receptor-binding domain (RBD) that included a receptor binding sequence (RBS) o...
متن کاملIn vitro binding of purified murine ecotropic retrovirus envelope surface protein to its receptor, MCAT-1.
An amino-terminal portion of the Friend murine leukemia virus (MLV) envelope surface protein [SU, residues 1 to 236 [SU:(1-236)]] and its receptor, MCAT-1, were each purified from insect cells after expression by using recombinant baculoviruses. Friend SU:(1-236) bound specifically to Xenopus oocytes that expressed MCAT-1 with an affinity (Kd, 55 nM) similar to that of viral SU binding to permi...
متن کاملModular organization of the Friend murine leukemia virus envelope protein underlies the mechanism of infection.
Retrovirus infection is initiated by receptor-dependent fusion of the envelope to the cell membrane. The modular organization of the envelope protein of C type retroviruses has been exploited to investigate how binding of the surface subunit (SU) to receptor triggers fusion mediated by the transmembrane (TM) subunit. We show that deletion of the receptor-binding domain (RBD) from SU of Friend m...
متن کاملMultimeric structure of the membrane erythropoietin receptor of murine erythroleukemia cells (Friend cells). Cross-linking of erythropoietin with the spleen focus-forming virus envelope protein.
In erythroleukemia cells infected with the polycythemia strain of the Friend virus complex, erythropoietin could be cross-linked mainly to a protein of 63 kDa when using disuccinimidyl suberate. In contrast, erythropoietin in other erythroleukemia cells cross-linked to two proteins of 85 and 100 kDa. When native erythropoietin receptor complexes were immunoprecipitated, the 63-kDa erythropoieti...
متن کاملIdentification of Aptamer-Binding Sites in Hepatitis C Virus Envelope Glycoprotein E2
Hepatitis C Virus (HCV) encodes two envelope glycoproteins, E1 and E2. Our previous work selected a specific aptamer ZE2, which could bind to E2 with high affinity, with a great potential for developing new molecular probes as an early diagnostic reagents or therapeutic drugs targeting HCV. In this study, the binding sites between E2 and aptamer ZE2 were further explored. E2 was truncated to 15...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of virology
دوره 73 5 شماره
صفحات -
تاریخ انتشار 1999